

AUTOMATIC HAY FEEDER FOR HORSES:

DESIGN AND MAKE A PROTOTYPE

Bachelor’s thesis

Automation Engineering

Valkeakoski, spring 2018

Quang Hung Trinh

ABSTRACT

Automation Engineering
Valkeakoski

Author Quang Hung Trinh Year 2018

Subject Automatic hay feeder for horses: design and make a

prototype

Supervisor(s) Juha Sarkula

ABSTRACT

The objective of this thesis project was to design and build an automatic
horse feeder which would be used at a family’s farm. An additional
objective of this project was to use Arduino platform to control the
machine. A micro-controlled horse feeder is extremely useful in providing
assistance to people who are usually busy at the feeding time to have
their horses fed steadily and on time while keeping the horses healthy
and safe. The thesis project was inspired by Mr. Markku Kippola and
carried out under his supervision. This was also a major advantage for the
author to gain more experiences about mechanical design and
microcontrollers.

The main purpose of this design was the automation of a horse feeding
device with an accurate and precise time set for the feeds to be released.
The feeder was designed so that it was suitable for hay. It came with an
implemented LED indicating when the container was empty, with an LCD
to indicate steps of the process, and smart switches to control the
solenoids of the gates. Furthermore, the mechanism of the prototype
played an important role in order to achieve effectiveness and simplicity
for the project.

The final prototype was completed and tested which met the
arrangements between the commissioner and the author. Moreover, the
outcome of this thesis project is that the design could be extended to
implement at individual stalls. All cabinets are operated by setting the
real-time and by assigning the desired time for the horses to be fed at the
same time.

Keywords Arduino, hay feeder, pull-type solenoid

Pages 56 pages including appendices 6 pages

CONTENTS

1 INTRODUCTION ... 1

1.1 Introduction... 1

1.2 Problem statement ... 1

1.3 Objectives .. 1

1.4 Scope of the project .. 2

1.5 Thesis roadmap ... 2

2 THEORETICAL BACKGROUND TO PROJECT .. 3

2.1 Product design and development ... 3

2.1.1 Characteristics of a successful product ... 3

2.1.2 Product development process flow .. 4

2.1.3 Challenges of designing a product .. 5

2.1.4 Concept development: The front-end process 6

2.2 Embedded system ... 8

2.2.1 History of microcontroller ... 8

2.2.2 RASBERRY PI 3 ... 9

2.2.3 ARDUINO ... 11

2.2.4 PROFETTM – Smart protected high-side switches 14

2.3 Linear solenoid actuator ... 18

2.3.1 General actuators .. 18

2.3.2 Overview .. 19

2.3.3 Working principle .. 20

2.3.4 Solenoid duty cycle and voltage .. 21

2.3.5 Applications ... 21

2.4 Inter-integrated circuit (I2C) .. 23

2.4.1 Introduction ... 23

2.4.2 Brief of history ... 23

2.4.3 Protocol ... 24

2.5 Real time clock (RTC) ... 25

2.6 Existing hay feeder on current market ... 27

2.6.1 Heinätin Single (Hayer) .. 27

2.6.2 DIY hay feeder for horses .. 28

3 PREREQUISITE PLANNING OF THE PROJECT .. 29

3.1 Characteristic of horses ... 29

3.2 Existing hay feeder .. 31

3.3 Inputs of the project .. 32

3.3.1 Identify customer needs .. 32

3.3.2 Target specifications .. 33

4 CONCEPT DESIGN .. 33

4.1 Suggested design version .. 35

4.2 Concept design version 1 .. 35

4.3 Concept design version 2 .. 37

4.4 Concept design version 3 .. 38

4.5 Concept design version 4 .. 39

5 FINAL PRODUCT ... 40

5.1 Product overview .. 42

5.2 Technical data ... 42

5.3 Arduino breadboard .. 45

5.4 Circuit architecture .. 45

5.5 Development of code .. 46

5.6 Advantages & features .. 52

5.6.1 Advantages .. 52

5.6.2 Features ... 52

6 LIMITATION AND EXPANSION POSSIBILITIES .. 53

7 CONCLUSION ... 54

REFERENCES .. 55

Appendices

Appendix 1 ARUINO CODE

ACKNOWLEDGMENTS

Here, I would like to take the opportunity to express my deepest gratitude to people
whom has played an important role in this project. Without them, this project would be
a failure.

The first person I would like to thank is my parents. Their constant support throughout
my whole life helps bring me here to the place I am today. Their moral and financial
support helps me to complete this project. My older and my girlfriend were always side
by side with me during the hardest time of project.

Secondly, I would like to personally thank my thesis commissioner Mr Markku Kippola,
who gave an amazing thesis project work and lead me initial steps to let the project went
well. Besides that, I would like to express my gratitude to my supervisor, Mr Juha
Sarkula, and Mr Jan-Peter Nowak, who directly guided me and also gave me vast of
useful advice. To Ms Niina Valtaranta, who gave lots of guidance for my thesis writings.

Thirdly, I would like to also express my gratitude to Mr Teppo Syrjäaho, mechanical
design professor at Riihimäki HAMK campus, who really gave best advices in mechanical
lessons, most important part in my thesis project.

Finally, I would like to thank all my friends and classmates whom lend me a helping hand
and gave me advice, opinion and also criticism to complete this project. With their help,
I can say that this project is a success.

Hung Trinh
Valkeakoski, 04.05.2018

1

1 INTRODUCTION

1.1 Introduction

An automatic horse feeder is a type of machine that allows the users to
set the preferred time to activate the machine to automatically feed the
horse at the specific time set. The goal of building the machine is reached
by various methods for the users to set the preferred time such as using
an external timer, a timing gate and many others.

The object of this thesis project was to design and build a prototype of an
automated horse feeder for a small group of horses (two or three) which
are taken care by a family. The basic concept of the machine is to feed
the horse at a specific time per day such as early morning, mid-day and
late night. For example, three hours per feeding, four feedings per cycle
and 2 -3 kg per feeding. Furthermore, an additional feature of this feeding
system can be to serve a large group of horses so that, the system comes
in various sizes.

1.2 Problem statement

Mr Markku Kippola, the commissioner of the thesis, planned to build a
feeding automation system for his own needs. His aim was to feed horses
on a fixed schedule because the feeding time is highly labour intensive.
Besides that, it is important to determine the variety and amount of food
fed to the horses. This is because correct and balanced nutrition is a
critical component of proper horse care. This means that the farmer has
to wake up early in the morning and stay up late at night just to make
sure that the feeding time is met.

1.3 Objectives

There were several objectives that were to be achieved in this project:

• To be creative and able to design an intelligent system of an
automatic horse feeder using a microcontroller.

• To learn about product development, how to select the right
objectives for the project.

• To learn about the mechanism of the actuator, mechanical building
for the system’s working principle.

• To learn about the art of programming in C++/C language.

• To combine all hardware skills, electronic knowledge with some
software development in realising this project.

2

1.4 Scope of the project

The components for the machine can be divided into two types:
automation parts and mechanical parts. The automation block
components included: a push buttons, a monitor LCD, smart switch, and
an Arduino microcontroller. Secondly, the mechanical part consists of
linear solenoid and the mechanical structure. The main feature of this
project is to automatically feed the horse at a certain time range which is
set by the user. In addition, the mechanical part of the system should be
carefully made to ensure that the amount of feed for each feeing can be
set to prevent any waste. Furthermore, the machine can feed manually
by the push button for horses when they were outside.

1.5 Thesis roadmap

This thesis consists of five main chapters as follows:
Chapter two, Theoretical background, presents the literature aspects for
the problem which contain the embedded system, product design and
development, the solenoid actuator, Inter-integrated circuit, and a real-
time clock.
Chapter three, Scope of the project, describes related factors as well as
the inputs and outputs of the project. The chapter also discusses the
requirements of the commissioner and the author’s targets.
Chapter four, Concept design, presents a set of concept ideas for the
project which were issued by the author.
Chapter five, Final product, shows the latest product as designed by the
author. The details of the product such as the materials, hardware, code,
and features are also presented.
Chapter six, Limitations and expansions, discusses the current limitations
and shows the future improvements of the product.

3

2 THEORETICAL BACKGROUND TO PROJECT

2.1 Product design and development

The mechanical design played an important role in this thesis project, so
that the author mentioned the literature of product design and
development in the following section. This section presents characteristic
of successful product, a generic product development process flow, the
contest of designing product and activities of concept development.

In fact, the author had to learn about mechanical design beforehand.
Because the mechanical theory is used as seeds for the creation of
development methods, uniquely suited to the personality of designers,
their talents. Practise without theory can easily result in thwarting and
fails to cultivate the knowledge that successful product development
professionals and projects have accumulated overtime. On the other
hand, guidance without practise is unproductive because there are many
nuances, exceptions, and subtleties to be learnt in practical settings and
because some necessary tasks simply lack sufficient theatrical
underpinning (T.Ulrich, Karl; D.Eppinger, Steven, 2016).

2.1.1 Characteristics of a successful product

Four specific dimensions below, all of which ultimately relate to profit,
are commonly used to assess the performance of a product development
effort. High performance, along these four dimensions, should ultimately
cause economic success; however, there are many other performance
criteria also important.

• Demonstrable: The products will be commercialized shapely and
they should have some kind of feature or aspect that makes
people admire and take note. When the products meet the
desired requirements and the better visual demonstration, they
will have more chances for success.

• Practical and problem solving: The product can be well explained
to the customer the problem, solution and benefit. The product
might increase the chances of success when they have more and
better common problem solving.

• Easy to explain how it works: Easy-to-understand introduction of
how the product works is an important way to please and seize
the consumer.

• Product pricing: The price should be equal the value of the
product, its function, manufacture cost and time. For example,
same type of product, but lower cost in manufacture and less
development time will be the better choice.

(Jeske, 2015)

4

2.1.2 Product development process flow

A common product development process consists of five phases, as
presented in Figure 1. Beginning with planning phase, which is related to
research activities about the subject. The output of the planning phase is
the statement of project’s mission, which will be the requirement to start
the concept development phase. The outcome of the product
development process is the debut of the product to the consumer which
can please the consumer’s need (T.Ulrich, Karl; D.Eppinger, Steven,
2016).

The spiral product development process is divided into five phases as
following:
1. Planning: The planning stage is referred to as initial phase because it

overreaches the project approval and launch of the actual product
development process. Opportunity identification directed by
corporate strategy is the first element of this phase, and this phase
also comprises assessment of technology developments and market
objectives. The output of the planning phase is mission statement and
this phase is presented in chapter three.

2. Concept development: In this phase, the needs of the products are

identified, alternative product concepts are generated and evaluated,
and one or more concepts are picked for further testing. A concept is
a description of the form, function, economic justification and
features of a product. In chapter four, four concept designs are
presented.

3. System-level Design: This phase is known as product architecture,
decomposition of the product into subsystems and components,
preliminary design of key components, and allocation of detail design
responsibility to both internal and external resources. The purpose of
the product architecture is to describe the basic physical building
blocks of the product in terms of what they do and what their
interfaces are to the other devices. Architectural decisions allocate
the detailed design and examination of these building blocks to be
assigned, such that development of different portions of the product
can be performed concurrently.

Mission
Approval

Concept
review

Cycle Plan
Review

Many Iteration Cycles

Design Build Test

Cycle
Review

Project
Review

Concept
Development

Planning
System-

level
Design

Production
Ramp-up

Figure 1. Spiral Product Development Process (T.Ulrich, Karl; D.Eppinger,
Steven, 2016)

5

4. Many iteration cycles: The product development process normally
follows of activity and information flow. Rapid-build products allow a
spiral product development process whereby detail design,
prototyping, and test activities are reiterated many times.

5. Production ramp-up: In the production ramp-up phase, the product
is made using the planned production system. The reason the ramp-
up is to work out any residual problems in the production process.
The review which may occur shortly after the debut comprises an
assessment of the project from both commercial and technical
perspectives and is aimed to identify ways to advance the
development process for future projects.

(T.Ulrich, Karl; D.Eppinger, Steven, 2016)

2.1.3 Challenges of designing a product

Creating and developing great products are complicated and hard. There
are some of the characteristics that make product development
challenging:

• Trade-off: One of the most difficult aspects of product
development is recognizing, understanding, and managing such
trade-offs in a way that maximizes the success of the product.

• Dynamics: Due to the development of technologies, customer
preferences evolve, competitors introduce new products, the
macroeconomic environment.

• Time pressure: The product development decisions must usually
be made quickly and without complete information.

• Economics: Developing, producing, and marketing a new product
requires a large investment. To find the reasonable pay-back on
this investment, the resulting product must be both appealing to
customers and relatively inexpensive to produce.

• Creation: The product development process starts with an idea
and finishes with the production of a physical artefact. When
viewed both in its entirety and at the level of individual activities,
the product development process is intensely creative.

• Satisfaction of societal and individual needs: All kind of products
which debuted are aimed at satisfying needs of consumers.
Individuals interested in developing new products can almost
always fund institutional settings in which they can develop
products satisfying what they consider to be important needs.

• Sustainability: Some designers have killer design ideas, but
unfortunately those ideas are not sustainable either on an
economic or environmental level. The product may have an
amazing design, but it costs too large to produce in huge
quantities. By taking this into account, the designers can ensure
that the product design can be resumed far into future market.

(T.Ulrich, Karl; D.Eppinger, Steven, 2016)

6

2.1.4 Concept development: The front-end process

The concept development stage of the development process demands
perhaps more coordination among functions than any other. In this
section, the concept development is enlarged into what called front-end
process. The front-end process basically consists many interdepended
activities, ordered roughly as presented in Figure 2.

In practice, the front-end activities may be overlapped in time and
iteration is often necessary. The uncertain nature of progress in product
development is revealed by the dashed arrows in Figure 2. At almost any
stage, new information may become available or results learned that can
cause the team to step back to repeat an earlier activity before
proceeding. This repetition of nominally complete activities is known as
development iteration (T.Ulrich, Karl; D.Eppinger, Steven, 2016).

The front-end process includes the following actions:

• Identifying customer needs: The goal of this activity is to
understand customers’ needs. The output of this step is a set of
carefully constructed customer need statements, organized in a
hierarchical list, with importance weightings for many or all the
needs. A method for this activity is presented in Chapter 3.

• Establishing target specifications: Specifications provide a
precise description of what a product has to do. They are the
translation of the customer needs into technical terms. A method
for the specification activity is given in Chapter 3.

• Concept generation: The goal of concept generation is to
thoroughly explore the space of product concepts that may
address the customer needs. Concept generation includes a mix
of external search, creative problem solving within the team, and
systematic exploration of the various solution fragments the team
generates. The result of this activity is usually a set of concepts,
each typically represented by a sketch and brief descriptive text.

• Concept selection: Concept selection is the activity in which
various product concepts are analysed and sequentially
eliminated to identify the most promising concept(s). The process
usually requires several iterations and may initiate additional

Figure 2. The many front-end activities comprising the concept
development phase. (T.Ulrich, Karl; D.Eppinger, Steven, 2016)

7

concept generation and refinement. A method for this activity is
described in Chapter 5.

• Concept testing: One or more concepts are then tested to verify
that the customer needs have been met, assess the market
potential of the product, and identify any shortcomings that must
be remedied during further development. If the customer
response is poor, the development project may be terminated or
some earlier activities may be repeated as necessary.

• Setting final specifications: The target specifications set earlier in
the process are revisited after a concept has been selected and
tested. At this point, the team must commit to specific values of
the metrics reflecting the constraints inherent in the product
concept, limitations identified through technical modelling, and
trade-offs between cost and performance.

• Project planning: In this final activity of concept development, the
team creates a detailed development schedule, devises a strategy
to minimize development time, and identifies the resources
required to complete the project.

• Economic analysis: The team, often with the support of a financial
analyst, builds an economic model for the new product. This
model is used to justify continuation of the overall development
program and to resolve specific trade-offs between, for example,
development costs and manufacturing costs. Economic analysis is
shown as one of the ongoing activities in the concept
development phase. An early economic analysis will almost
always be performed before the project even begins, and this
analysis is updated as more information becomes available.

• Benchmarking of competitive products: An understanding of
competitive products is critical to successful positioning of a new
product and can provide a rich source of ideas for the product and
production process design. Competitive benchmarking is
performed in support of many of the front-end activities.

• Modelling and prototyping: Every stage of the concept
development process involves various forms of models and
prototypes. These may include, among others: early “proof of-
concept” models, which help the development team to
demonstrate feasibility; “form only” models, which can be shown
to customers to evaluate ergonomics and style; spreadsheet
models of technical trade-offs; and experimental test models,
which can be used to set design parameters for robust
performance.

(T.Ulrich, Karl; D.Eppinger, Steven, 2016)

8

2.2 Embedded system

2.2.1 History of microcontroller

A microcontroller is a small computer on a single integrated circuit. Figure
3 shows that a microcontroller consists of one or more CPUs (processor
cores) along with memory and programmable input/output peripherals.
Most microcontrollers used these days are embedded in other machinery
such as telephones, robots, automobiles, and segments of computer
systems. Microcontrollers are assigned to one task and run one specific
program. In addition, the program is saved in read-only memory (ROM)
and generally does not change (Brain, 2000).

Figure 3. Main components of a microcontroller (Brain, 2000)

The timeline below illustrates the development history of
microcontroller:

• The first microcontroller which was debuted in 1971 was the 4-bit
Intel 4004, and in the next several years, Intel 8048, 8051 (Figure
4) and other more capable microprocessors became available.

Figure 4. Intel microcontrollers: Intel 8048 and 8051 (Maru, 2016)

• The TMS 1000 which created by TI engineers Gary Boone and
Michael Cochran became commercially available in 1974. It
consists read-only memory, read/write memory, processor and
clock on one chip and was targeted at embedded system.

• The 8051 microcontrollers were introduced in 1980 and is one of
the most popular microcontroller that days.

• In 1997, based on the existence of the single-chip TMS 1000, Intel
developed a computer system on a chip which called Intel 8048
optimized for control applications. It combines RAM and ROM on
the same chip.

9

• In 1993, Atmel introduced EEPROM memory which allowed
microcontrollers to electrically erased quickly without an
expensive package as required for EPROM, allowing both rapid
prototyping, and in-system programming.

• In 1993, Atmel introduced the first microcontroller (Figure 5)
using Flash memory, a special type of EEPROM.

Figure 5.Atmel microcontrollers (Maru, 2016)

• As times have changed, requirements have increased and the size
of the controllers (devices that control processes) has decreased.
Microcontrollers like AVR (Alf (Eigil Bogen) & Vegard (Wollan)’s
Risc Processor), and PIC (Peripheral Interface Controller) have
become smaller and sleeker yet more and more powerful. For
example, in current market, there are so tiny microcontrollers
available, small and cheap enough to be used in simple products
like kid toys, electric toothbrushes, and smartphones. Moreover,
microcontrollers become available widely for studying,
researching and working on project, with large online
communities around certain processors.

(Brain, 2000)

2.2.2 RASBERRY PI 3

Controlling the system by microprocessor Raspberry PI (the Pi) is an initial
suggestion from commissioner. After the research about the Pi, the
author has gathered some advantages and possibilities of the PI when
applied to the prototype.

Introduction

Figure 6. Raspberry Pi 3 model B (Joeman, Kellyhensen, 2016)

10

The Raspberry Pi is a credit-card-sized single board computer that
connect with at least a combination of a screen, a keyboard, a mouse and
a power supply. It is equipped a Quad-Core 64-bit CPU, WiFi & Bluetooth.
Furthermore, the Pi has four USB ports to connect other devices,
Ethernet socket to connect data transferring devices, and other specs

In practical, it is a capable little computer which can be used in electronics
projects and for many of things that desktop PC does, like coding, word
processing, browsing the internet, and playing games. With a reasonable
price under 35 euros, a Raspberry Pi 3 can be purchased online.

Get started
Once all cables are plugged into the Pi, it can run a full Linux based
operating system and has hardware support for SPI, I2C and Serial. The
OS, which is constantly being improved, recently had a graphical
overhaul, and includes an optimized web browser, an office suite,
programming tools, educational games, and other software (HeathNick,
2017).

The Pi can operate as a budget PC, however it will lag loading heavier
websites and, when browsing these demanding sites, having tabs open
at once runs the risk of overloading the Pi’s memory that causing a
lengthy freeze (Heath, 2017).

Features
Until the end of 2017, raspberry Pi 3 model B was the latest version
(Figure 6). Currently, Pi 3 model B+ is the newest version which has much
more modifications but that version is not used widely these days. The
features of model B are listed below:

• Now 10x Faster - Broadcom BCM2387 ARM Cortex-A53 Quad
Core Processor powered Single Board Computer running at
1.2GHz!

• 1GB RAM so you can now run bigger and more powerful
applications

• Fully HAT compatible

• 40pin extended GPIO to enhance your “real world” projects.

• Connect a Raspberry Pi camera and touch screen display (each
sold separately)

• Stream and watch Hi-definition video output at 1080

• Micro SD slot for storing information and loading your operating
systems.

• 10/100 BaseT Ethernet socket to quickly connect the Raspberry Pi
to the Internet

(HeathNick, 2017)
Advantages

• It is easy to connect to internet, connect with wireless devices.

• Can be programmed using variety of programming languages
such as Python, C++/C, …

11

• Driving a more complicated robot, performing multiple tasks,
doing intense calculations.

Limitations

• Complicated to use than another microcontroller such as Arduino.

• Approaching hardware is not real-time. If the CPU is busy, then
interfacing with hardware can be delayed.

• Not open source and taking times to learn and use well with the
Pi.

2.2.3 ARDUINO

Arduino platform is a secondary option which selected from the author.
Because of its usage and beneficial which listed in this section, Arduino is
chosen to be a controller for this project, a prototype. The problems
solving and simple programming system are two main purposes when
using this platform although there are some limitations

Introduction

In a modern world, embedded systems are everywhere — in
cars, buildings, factories and roads. There are numerous
fascinating applications and interesting companies in the
market. The global embedded systems market is worth over
200 billion USD, and rapidly growing.

(Viitala, 2018)

Arduino is an open-source microcontroller used for building electronics
projects which can be easily programmed, debugging and reprogrammed
at any instant of time. Arduino contains of both physical programmable
circuit board (often referred to as a microcontroller) and a piece of
software for developing the code known as the Arduino IDE (Integrated
Development Environment) that runs on user’s computer, used to write
and upload computer code to physical board through USB connection.
Built up with the 8-bit Atmel AVR microcontroller’s that are
manufactured by Atmel or a 32-bit Atmel ARM, these microcontrollers
can be programmed easily using the C or C++ language in the Arduino IDE
(b_e_n, 2012).

Moreover, Arduino has I2C bus which reducing the components’ wires
into two (SDA – data and SCL – clock). As there are literally thousands of
components that use the I2C interface. And Arduino boards can control
them all. Currently, many applications use I2C bus connection, such as
real-time clocks, digital potentiometers, memory chips, FM radio circuits,
I/O expanders, LCD controllers, amplifiers, temperature sensors, and so
on. The maximum number of I2C devices can operate at one time is 112
(Boxall, 2014).

Since it reached a wider community, the Arduino board started changing
to get used to new needs and challenges, it offers a vast range of

12

applications from 8-bit boards to products for IoT applications, wearable,
3D printing, and embedded environments.

Arduino type
In the market these days, there are several types of Arduino, and these
types presented in Table 1.

Table 1. Arduino types (b_e_n, 2012)

Arduino type Microcontroller Clock speed

Arduino Uno ATmega328 16 MHz with auto-reset

Arduino Duemilanove /
ATmega328

ATmega328 16 MHz with auto-reset

Arduino Nano ATmega328 16 MHz with auto-reset

Arduino Mega 2560 or
Mega ADK

ATmega2560 16 MHz with auto-reset

Arduino Leonardo ATmega32u4 16 MHz with auto-reset

Arduino Mini w/
ATmega328

ATmega328 16 MHz with auto-reset

Arduino Ethernet Equivalent to Arduino UNO with an
Ethernet shield

Arduino Fio ATmega328 8 MHz with auto-reset

Arduino BT w/
ATmega328

ATmega328 16 MHz with auto-reset

Lily Pad Arduino w/
ATmega328

ATmega328 8 MHz (3.3V) with auto-
reset

Arduino Pro or Pro Mini ATmega328 16 MHz with auto-reset

Arduino NG ATmega8 16 MHz with auto-reset

Figure 7. Arduino MEGA 2506 (b_e_n, 2012)

13

Arduino MEGA board (Figure 7) was chosen for this project cause of its
huge extension. The Arduino Mega is like a big brother of Arduino Uno. It
owns 54 of digital input/output pins which consist of 14 pins as Pulse-
width Modulation (PWM) outputs, 16 Analog inputs, a USB connection, a
power jack, and a reset button. With this board, it contains everything
needed to operate a microcontroller; just a simply connect the board to
a computer through a USB cable or with a Ac to DC adapter. With the vast
of pins makes this board very handy for complicated projects that require
a bunch of digitals inputs or outputs (such as lots of LEDs or buttons or
sensors).

Advantages
Arduino also shortens the process of working with microcontroller, but it
proposals some advantages for users over other systems:

• Inexpensive hardware: Since Arduino is an open source platform
the software is not purchased and only the cost of buying the
board or its parts is incurred, thus making it very inexpensive.

• Multi -platform environment: The Arduino programming
software IDE can run on many platforms including Windows, Linux
and Mac OSX. This makes the user community even larger.

• Simple and clear programming language: The Arduino Software
(IDE) is friendly and easy-to-use for beginners, adaptable enough
for processed users to take advantages as well.

• Growth of Arduino: Arduino was growing with intent to provide
an economical and trouble-free way for users to build devices that
interact with their situation using sensors and actuators. Because
of the development, this makes it perfect for new users to get
started quickly.

• Open source and extensible software: the Arduino software is
published as open source tools, the extensive can be provided by
advanced programmers. Additionally, the Arduino IDE uses a
simplified version of C++ which makes it easier to learn to
program.

(Louis, 2016)

• Can run one program at a time (real time), over and over again.

Limitations

• Not very powerful when compared with Raspberry Pi
(Microcontroller vs Microprocessor). Cannot run a lot of heavy
algorithms, or interface with a touchscreen, and without external
shields. Clearly, Arduino cannot run OpenCV.

• It is difficult to connect to internet (the user should have internet
shields and libraries, but is not straight forward).

• Short range of temperature in use

• Memory limitations (extremely low when compared to the Pi)

14

2.2.4 PROFETTM – Smart protected high-side switches

Other option
To drive actuators, at first, the author used simple relay motor driver such
as ULN2803 which is indicated in Figure 8.

Figure 8. ULN2803A as Inductive load driver

ULN2803A device functions as a relay driver which consists of eight NPN
Darlington pairs that feature high-voltage outputs with common-cathode
clamp diodes for switching inductive loads (ULN2803A Darlington
Transistor Arrays, 2017). The output current is 300 mA per channel with
500 mA is a peak collector current.

Because the prototype needed high current solenoids (such as higher
than 1A) to run so that the high current motor driver required.
Unfortunately, ULN2803A model is not suitable because of its short range
of output current. The author decided to use PROFET instead of relay
driver and its features are presented in following section.

PROFET overview
PROFET intelligent power switches which consist of Double-Diffused MOS
(DMOS) power transistor and Complementary metal-oxide-
semiconductor (CMOS) logic circuitry for complete built-in protection
offers protection against overload, overvoltage, short-circuit, loss of
ground, power supply loss. The vast range of PROFET brings protection

15

and diagnosis features to drive high current loads in automotive (12V,
24V), industrial application and commercial, construction & agricultural
vehicles (CAV).

The PROFET diagnostics make the option between status or current sense
features, or a combination of both. Moreover, the status feature
highlights the diagnosis of overtemperature or open-load. Diagnostic
features also provide the user with precise data of switch and load.
Knocking out the need for further discrete circuitry and assembly causes
reducing risks for diagnostic feedback and load current sensing.

There are some common features of all PROFET models:

• Overload protection

• Current limitation

• Short circuit protection

• Thermal shutdown

• Overvoltage protection (including load dump)

• Fast demagnetization of inductive loads

• Under-voltage and overvoltage shutdown with auto-restart and
hysteresis.

• Open drain diagnostic output

• Open load detection in ON-state

• CMOS compatible input

• Loss of ground and loss of Vbb protection

• Electrostatic discharge (ESD) protection

• Green Product (RoHS compliant)

• AEC Qualified
(Infineon Technologies AG, 2013)

Figure 9. Building intelligence into Automotive switches (Protected and
Intelligent Power Switches, 2016)

With the evolution of automotive applications, the performance required
of switching devices is also changing as can be seen in Figure 9. Replacing
from the traditional automotive switches - relay drivers to intelligent
power switch. With this evolution, it helps to resolve various issue such

16

as low value resistance, longevity, noise, high temperature, size
(Protected and Intelligent Power Switches, 2016).

PROFET model: BTS410E2
Intelligent high side switches BTS410E2 are designed to control a wide
variety of loads in automotive and industrial systems, especially perfect
for automotive load switching applications. These switches are intended
to protect loads from transients by isolating the load from the transient
energy rather than absorbing it. The layout of this model is presented in
Figure 10. This model is compact in size and has high reliability. The size
is completely reduced to an equivalent mechanical relay product.

Application examples:

• Lighting

• Heating

• Power distribution

• Motor control
Load:

• Capacitive, such as lamps and glow plugs

• Resistive, such as seat heating

• Inductive, such as solenoids

• Electronic, such as ECU

Figure 10. BTS410E2 model (Smart High-Side Power Switch, 2013)

Table 2. BTS410E2 pins description (Infineon Technologies AG, 2013)

Pin Symbol Function

1 GND - Logic ground

2 IN | Input, activates the power switch ion case
of logical high signal

3 Vbb + Positive power supply voltage, the tab is
shorted to this pin

4 ST S Diagnostic feedback, low on failure

5 OUT (Load, L) O Output to the load

17

The pin details information is listed in Table 2. The pin number from 1 to
5 are presented from left to right of the module as can be seen in Figure
5. Pin 1 (GND) relates to all GND from Arduino, power source and
actuator. Pin 2(IN) of switch will connect digital pin in Arduino board to
control the motor statement. Pin 3(Vbb) is attached to positive of power
source. When the output of motor needed to be measured, and
diagnosed feedback, then Pin 4(ST) will be used. Finally, the positive of
motor is connected to Pin 5(load out) (Infineon Technologies AG, 2013).

With N-channel vertical power FET with charge pump, ground referenced
CMOS compatible input and diagnostic feedback, monolithically
integrated in Smart SIPMOS® technology. This product is fully protected
by embedded protection functions. Based on the product summary in
Table 3, this can be illustrated in these applications:

• µC compatible power switch with diagnostic feedback for 12V and
24V DC grounded loads.

• All types of resistive, inductive and capacitive loads.

• Replaces electromechanical relays, fuses and discrete circuits.
(Infineon Technologies AG, 2013)

Table 3. Product summary

Overvoltage
protection
Vbb (AZ)

Operating
voltage
Vbb(on)

Load
current
IL(ISO)

Current
limitation
IL(SCr)

On-state
resistance
RON

5V 4.7 … 42V 5A 1.8A 220 mOhm

According to the block diagram in Figure 11 of model BTS410E2, we can
assume the following features:

• Basic features:
o Using an Intelligent power device (IPD) with protection/self-

diagnostic functions built in.
o The overcurrent protection function discontinues current to

the load when overcurrent detection value is reached.
Moreover, they also protect related components through
wire harness.

o RoHS compliant & AEC qualified
o ESD protection, optimized EMC
o 3.3V and 5V compatible logic inputs
o Very low power DMOS leakage current in OFF

• Protection features
o Load dump
o Current limitation
o Loss of ground/battery
o Efficiently drives large current load with low on-resistance,

thus contributing to reduced power consumption of the
ECU.

o Overvoltage protection.

• Diagnostic features

18

o Proportional load current sense
o Open-load in ON- and OFF-state
o Short-circuit to battery and ground
o Overtemperature sense

Figure 11. BTS410E2 Block diagram (Infineon Technologies AG, 2013)

2.3 Linear solenoid actuator

2.3.1 General actuators

Introduction
An actuator typically is a mechanical component that takes energy (is
normally created by air, electricity or liquid) and converts it into
motion/force. That motion can be in virtually are used any form, such as
blocking, clamping or ejecting (Poddar, 2015). Actuators are used in many
kinds of projects, manufacturing or industrial applications.

The architecture of actuator is illustrated in Figure 12. When energy is
applied to actuator, motion/force is generated. Moreover, digital signal
is also an input for actuator which sent by controllers.

Figure 12. Actuator’s architecture

Energy source

19

The most common source applying to actuator is air and that type is
called a pneumatic cylinder or air cylinder. This method is that uses the
stored energy of compressed air to move a piston when the air is released
or uncompressed. These kinds of actuators are commonly used in
manufacturing, grippers from robotics and assembly processes.

Electricity or hydraulics is another option of power source to supply to
actuators. Pretty much lick there are air cylinders, there are also electric
cylinders and hydraulic cylinders in which the cylinders converts
electricity or hydraulics into motion. (Poddar, 2015)

Actually, many actuators can operate by more than one type of power
source. For instant, solenoid valves can be powered by both air and
electricity or hydraulics and electricity.

Type of motion
Actuators can produce a linear motion, rotary motion or oscillatory
motion that means in one direction, in a circular motion or in opposite
directions at regular intervals. There are two actions that an actuator can
present. Single-acting means that the energy source causes movement in
one direction and a spring is used for the other direction. Double-acting
cylinders mean that the energy is used in two directions.

In this thesis project, the author has selected the linear solenoid actuator
to run the mechanism. And using the single-acting to perform the unique
working principle which created by the author.

2.3.2 Overview

A linear solenoid, an example of which is seen in Figure 13, is another
type of an electromagnetic actuator that transforms an electrical signal
into a magnetic field producing a linear motion (Storr, 2014.).

Figure 13. Pull- type of solenoid

20

The device has the name as “Linear solenoid” due to the linear directional
movement and the action of the plunger. Linear solenoids are divided
into two basic types called the “pull-type” as the plunger is normally
outside the solenoid because the spring naturally forces the plunger out,
the force pulls the plunger into the solenoid when energized; and the
“push-type” is the opposite, in that the spring forces the plunger into the
solenoid, but when energized the plunger is pushed out.

2.3.3 Working principle

Basically, the linear solenoid includes an electrical coil wound around a
cylindrical tube with a ferro-magnetic actuator or “plunge” that is free is
move or slide “IN” and “OUT” of the coils body. When sending an
elcectric curent through the coil, a magnetic field (as can be seen in
Figure 14) is created. This coil of wire becomes an “Electromagnet” with
its own north and south poles exactly the same as that for a permanent
type magnet. The tenacity of this magnetic field can be increased or
decreased by either controlling the amount of current flowing through
the coil or by changing the number of of turns or loops that the coil has
(Storr, 2014.).

Figure 14. Electromagnetic field due to the flow of. (Storr, 2014)

This solenoid does not need a H-bridge or an expensive motor driver.
Instead, a single MOSFET/ PROFET or relay will switch and controll the
solenoid. The inner shaft of a solenoid is a piston like cylinder made of
iron and steel, called the pluger or slug (pertain to an armature). This
plunger is handled a force causing by a the magnetic field, either
attracting or repeling it. When the power is turned off, the
electromagnetic field which generated previously by the coil collapses
and the energy stored in the compressed spring forces the plunger back
to its original rest position. This back on forth movement of the plunger
is called “stroke” (as can be seen in Figure 15) , in other word the distance
the plunger can travel in either an “IN” of an “OUT” direction (Storr,
2014.).

21

Figure 15. Inside the pull-linear solenoid (Storr, 2014)

2.3.4 Solenoid duty cycle and voltage

Solenoid duty cycle
The duty is known as a percentage and represents the proportion of time
that solenoid is energized: For example:

• If a solenoid is powered for 15 seconds and switched “off” for 45
seconds before being energised again. Then the total on/off cycle
time is 60 seconds which means 25% duty cycle. This called
intermittent duty solenoid.

• If the energised period is continuous then the solenoid will need
to be rated at 100%. Continuous duty solenoids are developed for
operating conditions with continuous, heavy-duty uses. They are
more durable than intermittent solenoids and physically larger in
size.

Many recent solenoids come with a standard 100% duty cycle which is
ideal for most applications (The glossary of solenoid, n.d.).

Voltage
The user should specify the operating voltage of solenoids. Most
solenoids are DC and can be wound for any voltage. A solenoid can be
“over-voltage” to achieve a greater force than the spec design. However,
the over voltage will create additional hear, thus reducing the duty cycle.

2.3.5 Applications

With the features of linear solenoids, they can be applied to many
applications which are presented from Figure 16 to Figure 19.

There is an announcement that an electromechanical solenoid can melt
if the user power it too long. When selecting linear solenoid, as with any
other solenoid style, it is important to consider the effects of heat, since
an increase in coil temperature reduces the work output and the life of
the unit. Life rating extend to 5 million cycles depending on the product

22

size and application. When determining an application’s force
requirement, the user must apply a 1.3 to 1.5 safety factor. For example:
when a 2 kg pull force is required, recommendation is selecting a model
with a safety factor of 1.3 to 1.5 times (2.6 to 3 kg).

In this project, the author selected the pull-type of liner solenoid to
control the position of the plates. Moreover, the box frame type of linear
solenoid has been chosen. This solenoid has a four-sided closed box
frame and solid plunger. The closed, box frame also provides improved
mechanical strength.

Kick
With kick application, a solenoid takes
responsibility to immediately kick out
the rejection part with the combination
of motion electronics and detection
sensors.

Divert
To divert one line into two separate lines,
linear solenoids can also do it. The gate
diverters, can be used continuously or
very infrequently. Prefer long life rating of
solenoid up to 100+ million actuations.

Lock / latch
Solenoids are used as locking applications including vault doors, cash
registers, disk drives and missile systems.

Postion
Positioning applications can range from a
simple ratcheting device, such as the one
illustrated, to precise variable positioning sub-
assemblies.

Figure 16. Kick application (Solenoids, 2012)

Figure 17. Divert application (Solenoids, 2012)

Figure 18. Lock/latch application (Solenoids, 2012)

Figure 19. Position application (Solenoids, 2012)

23

2.4 Inter-integrated circuit (I2C)

2.4.1 Introduction

The inter-integrated circuit (I2C) protocol is the official procedure aimed
to allow multiple “slave” digital integrated circuits (“chips”) to
communicated with one or more “master” chips. It is widely used for
attaching lower-speed peripheral ICs to processors and microcontrollers
in short-distance (SFUPTOWNMAKER, 2013).

Figure 20. I2C master and slave relationship (SFUPTOWNMAKER, 2013)

I2C needs a mere two wires, as well as asynchronous serial, but those two
wires can support up to 1008 slave devices. I2C can support a multi-
master system, all devices on the bus are communicated more than one
master (although the interaction between master devices cannot reach
over the bus and they have to take turns using the bus lines).

2.4.2 Brief of history

• In 1982, I2C was invented and developed by Philips for vast of
Philips chips. The spec allowed for only 100kHz communications
and 7-bit addresses are provided, limiting the number of devices
on the bus to 112 (there are several reserved addresses, which
will never be used for valid I2C addresses).

• In 1992, a 400kHz fast-mode was added as well as an expanded
10-bit address space. There are three additional modes specified:
fast-mode plus at 1MHz; high speed mode at 3.4MHz; and ultra-
fast mode at 5 MHz.

• In 1995, Intel introduced a variant called “System Management
Bus” (SMBus). SMBus intended to maximize predictability of
communications between support ICs on PC motherboards.
SMBus contents a clock timeout mode which makes low-speed
operations illegal, although many SMBus devices will support it
anyway to maximize interoperability with embedded I2C systems

• Today, the I2C bus is used in many difference application fields
than just audio and video equipment. The I2C bus has been

24

accepted by several leading chip manufactures like Xicor, ST
Microelectronics, Infineon Technologies, Intel, Texas Instrument,
Maxim, Atmel, Analog Devices and others.

(SFUPTOWNMAKER, 2013)

2.4.3 Protocol

The signalling must stick fast to a certain protocol for the devices on the
bus to admit it as valid I2C communications.

Figure 21. Bit frame of I2C (SFUPTOWNMAKER, 2013)

The signal messages are divided into two types of frame: an address
frame, where the slave is indicated by the master to which the message
is being sent, and one or more data frames, which are 8-bit data
messages passed from master to slave or vice versa. Data is located on
the SDA line after SCL goes low, and is sampled after the SCL line goes
high. The devices on the bus define the time between clock edge and data
read/write.

Start condition
To start the address frame, the master device leaves SCL and pulls SDA
low. With this action, all slave devices are put on notice that a
transmission is to initiate. If two master devices intend to take ownership
of the bus at one-time, whichever device pulls SDA low first wins the race
and gains control of the bus.

Address frames
The address frame is always appeared first in any new communication
sequence. For a 7-bit address, the address is clocked out most significant
bit (MSB) first, followed by a read/write bit indicating whether this a read
(1) or write (0) operation.

From the Figure 21, for every 8 bits of data to be sent, one extra bit of
meta data appears (the “ACK/NACK” bit). This is the case for all frames
(data and address). Once the first 8 bits of the frame are sent, the
receiving device is given control over SDA. If the receiving device does not
pull the SDA line low before the 9th clock pulse, it can be inferred that

25

the receiving device either did not receive the data or did not know how
to parse the message.

Data frames
After the address frame has been sent, data can start to be conducted.
The master will continue developing clock pulses at a regular interval, the
data will be located on SDA by either the master of the slave, depending
on whether the R/W bit indicated a read or write operation.

Stop condition
Since all data frames have been transmitted, the master will generate a
stop condition. These conditions are defined by 0  1 (from low to high)
transition on SDA after a 0  1 transition on SCL, with SCL remaining high.
During normal data writing operation, the value on SDA should not
change when SCL is high, to avoid false stop conditions.

(SFUPTOWNMAKER, 2013)

2.5 Real time clock (RTC)

When working with Arduino platform, Arduino itself has built-in
timekeeper, but we still need a separate RTC for Arduino project (Figure
22). The point is that the RTC module operates with a battery and can
keep track of the time even if the users reprogram the microcontroller or
turn of the main power.

Figure 22. Real time clock DS3231 model

The version using in this project is DS3231. The DS3231 is inexpensive and
highly accurate I2c real-time clock with an integrated temperature-
compensated crystal oscillator (TCXO). The main feature is retaining
hours, minutes and seconds, moreover the RTC can cover day, month and
year information as well. In addition, it has automatic compensation for
leap-years and for months with fewer than 31 days. The module DS3231
operates with voltage from 3.3 to 5V and needs a typical CR2032 3V
battery to power up the module and maintain the information.
Furthermore, the module uses the I2C Communication Protocol which
makes the connection to the Arduino board easily (Nedelkovski, 2016).

26

Pinouts:

• Power pins
o VCC – this is the power pin. To power the module, just give

it the same power as the logic level of microcontroller such
as Arduino 5V.

o GND – common ground for power and logic

• I2C logic pins
o SCL – I2C clock pin, connect to microcontrollers I2C clock

line. This pin has a 10K pull-up resistor to Vin
o SDA – I2C data pin, connect to microcontrollers I2C data

line. This pin has a 10K pull-up resistor to Vin

• Other pins:
o 32K – 32KHz oscillator output. Open drain, you need to

attach a pullup to read this signal from a microcontroller
pin

o SQW - optional square wave or interrupt output. Open
drain, you need to attach a pullup to read this signal from
a microcontroller pin

Connecting module to Arduino (Figure 23):

• Connect Vin to the power supply, 3-5V is fine. Use the same
voltage that the microcontroller logic is based off.

• Connect GND to common power/data ground.

• The module uses the I2C bus, which makes the connection
becomes very easy.

• Identifying which pins on Arduino or compatible boards are used
for the I2C bus, these will be known as SDA (data) and SCL (clock).
On Arduino Mega 2560 or compatible boards, these pins are D20
and D21 respectively.

• The module was tested by the author and can run in good
precision.

Figure 23. Connection between RTC module and Arduino Mega

27

2.6 Existing hay feeder on current market

2.6.1 Heinätin Single (Hayer)

Figure 24. Hayer from Oy Equine Innovations Ltd (Oy Equine Innovations Ltd,
2018)

The Figure 24 presents the existing hay feeder which manufactured and
developed by Oy Equine Innovations Ltd. It has a triangle shape which
made of powder-coated steel and it can locate on the corner of rented
stall. The dimensions of the Hayer cabinet are 120x60x60cm. It has three
layers which can contain feeding food (hay), and three actuators which
placed on the left side control positions of those layers such as holding
the layers and releasing the layers to fall downward. The Hayer can serve
three portions per cycle with a maximum weight of 6kg per feeding.
When the timer is triggered, hay will fall by gravity. The Figure 25 shows
that the horse was fed by the hay feeder at winter time. Then the owner
will fill the Hayer unit manually when empty. (Oy Equine Innovations Ltd,
2018).

Strength of the Hayer:

• Comes in two models, Multi and Single. The Multi models are
suitable for stables with 1-5 Hayer units and the battery-driven
Single models are suitable for individual horses in rented stalls,
for example.

• It looks stylish, no corner sharp.

• Long battery life: up to 10 days outdoors at -15 degrees Celsius.

• The battery-powered Hayer Single does not require any wiring,
and it is easy to move to a new stall or stable with your horse, if
necessary.

• Less electricity consumption.

28

Figure 25. Hayer is located outdoor at winter time (Oy Equine
Innovations Ltd, 2018)

2.6.2 DIY hay feeder for horses

Figure 26. DIY hay feeder (the left steel feeder) (Hukka, 2017)

The Figure 26 illustrates the DIY hay feeder which made by a Youtuber
named Sari Hukka. The mechanism of this machine is pretty much same
with the previous hay feeder from Oy Equine Innovations Ltd that using
one layer and one simple actuator which controlled by a switch. So that
on this model, there is only one portion on one cycle, and it can store up
to 4 kg of hay. (Hukka, 2017)

Limitation of this model:

29

• No automation module, less productivity.

• Can only serve one portion on one cycle.

3 PREREQUISITE PLANNING OF THE PROJECT

3.1 Characteristic of horses

Horse is a herb animal (herbivore) and feeds on primarily grasses (hay),
herbs, vegetables, and water. The Figure 28 and 29 present hay, oat and
grain which are the mainly food supply for dosmestic horses in Finland.
Lacking of protection of the herb, it is difficult for the horse to survive in
the wild. Being as a group, horses become safer, more securities,
protections, peaces and a greater chance of survival.

Domestication of the horse has
influenced the characteristics of the
horse, and this period took place
around 5000 to 6000 years ago. To
help the horse , the human gave the
horse food and shelter. The horse is
dependent on humans instead of the
behavior of finding. Therefore the
horse nowsaday evovle through
centuries from being hunted animal
to become riding animal, woriking
horse, beast of burden and draught-
horse.

In the Figure 27 we can see that is the
stable of a horse which currently
located in Valkeakoski, Filand and the
owner was taking care of the horse
and feeding hay manually by laying
hay on the ground. This picture was
captured the last feed for her horse at
8:00 pm, after having a ride with it.
Not only hay, oats and grain (Figure
29) are also fed to supply enough
nutrition for horses.

Figure 27. A stable for horse

30

Figure 28. Bale of hay

Figure 29. Grain (left) and Oat (right)

In the wild, horses forage and graze for up to 18-hours every day.
However, in captivity, most horses are fed only twice per day. This
intelligent, sensitive, and curious animal may become bored while
waiting several hours for his next feeding. Destructive and unhealthy
behaviours may ensure resulting in aggressiveness cribbing, and even
foraging & eating dirt, sand, & rocks. And free-feeding won’t work for
most horses, because they will gorge, which may lead to fatal colic. So
according to current research of the eating behaviour of the horses,
feeding small amounts of forage throughout the day helps promote a
healthier gastrointestinal system, and also helps alleviate boredom. The
result is a healthier and happier horse.

31

3.2 Existing hay feeder

Currently the job of feeding hay for domestic horses is the responsibility
of humans. The owner of horse must spend a lot of time to feed the horse
at a specific time in a day. However, when the owners cannot build the
stalls for their horses, they must send horses to rented stalls illustrated
in Figure 30 and hire employees to take care of their horses at night and
during busy times.

Figure 30. Stalls for horses

Figure 31. Bunch of hay on the ground (left) and a hanging package of
hay (right)

32

In Figures 31 and 32, there are two ways of feeding hay. On the left
picture of Figure 31, the hay was placed in one corner or on the hay racks.
On Figures and 31 and 32, the horses were fed by hay bags with long trips
that allow the horse to lower his head during rest stops so its nasal
passages can drain. These methods are mainly provided manually by
humans if the cabinet is empty.

Figure 32. Hanging package of hay outdoor

3.3 Inputs of the project

After picking up knowledge about control system, phases of product
development and scope of the project, the author wants to highlight to
the reader here how the final product was debuted. Firstly, the planning
phase known as the input for the project is presented in this chapter.

3.3.1 Identify customer needs

The goal of this activity is to understand the needs of the commissioner
as well as other customers, and to effectively connect it with the other
phases. The output of this step is a set of thoroughly constructed
customer need statements, organized in a hierarchical list, with
importance weightings for many or all the needs. After collecting
requirements from the commissioner, the highlights for this project
were:

• Build a prototype for an automatic feeder controlled by a
Raspberry Pi or Arduino.

• Can provide 3-4 portions per cycle, each portion containing 2-3 kg
of hay, three hours between portions

• A simple prototype, low cost in material and the installation.

• There are some feeding time options to select by the users.

33

3.3.2 Target specifications

The target specifications are responsible for description of what a
product has to do. They are the translation of the customer need into
technical terms. Targets for the specifications are set early in the process
and represent the desires of the author. The output if this stage is a list
of target specifications. Each specification comprises of a metric, and
marginal and ideal values for that metric (T.Ulrich, Karl; D.Eppinger,
Steven, 2016). The author established a set of targets in following part:

• Ergonomics: The system makes the user comfortable, safety in
use and improves the productivity.

• The system can be controller and programmed to a precise
schedule using real-time clock and its timer. For example, there
are some options such as option 1: 2 hours; option 2: 2 hours 30
minutes; option 3: 3 hours; …

• Friendly user interaction: There are simple inputs like two buttons
which programmed by Arduino. The users can easily learn to use.

• There is a LCD to display recent time and next time for following
portion.

• The system can supply enough portions for horses when the user
left.

4 CONCEPT DESIGN

According to commissioner’s needs, many concepts have been generated
by the author. Product concept is an approximate description of the
technology, working principle, and the form of the product. It is a brief
description of how the product will satisfy the customer needs. A sketch
usually indicates a normal concept design as well as a rough three-
dimensional model and is often accompanied by a brief textual
description.

The concept generation process starts with set of customer needs and
target specifications and results in a group of product concepts from
which the designer will make a final choice. The method of creating
concepts, which outlined in Figure 33, consists five steps. The
complicated problem splits into simpler subproblems. The external and
internal search process determines solution concepts for the
subproblems. Then classification trees and concept combination tables
are used to systematically examine the space of solution concepts and to
integrate the subproblem solutions into a total solution. Afterwards, the
designer reflects on the validity and applicability of the results, as well as
on the process used (T.Ulrich, Karl; D.Eppinger, Steven, 2016).

34

The purpose of designing layout for the feeder is intending to please
commissioner’s needs, improve quality and ergonomics and increase
automation factor. At the end of concept design period, four different
layouts were realized, the prototypes, the functional description,
benefits and limitations would be highlighted in this chapter.

The factors which were used during the concept generation period is
listed below:

• Customer needs

• Quality

• Price

• Ergonomics

Integrated solutions

Subproblems

1. Clarify the problem.

• Understanding

• Problem
decomposition

• Focus on critical
subproblems

2. Search externally

• Lead users

• Experts

• Patents

• Literature

• Benchmarking

3. Search internally

• Individual

• Group

4. Explore
systematically.

• Classification tree

• Combination table

5. Reflect on the
solutions and the
process.

• Construction

• Feedback

Existing concepts New concepts

Figure 33. Concept generation method (T.Ulrich, Karl; D.Eppinger,
Steven, 2016)

35

• Friendly with both humans and horses

• Reliability and easy to maintenance

• Productivity

In this project, I chose the way to express the development process is as
the initial creation of package of alternative product concepts. And then
after testing time, the alternatives can be tightened and the final product
which inherited the advantages from other alternatives will be attained.
In opinion of the author, this design function plays the important role in
describing the physical form of the product to best meet customer needs.
The design function consists engineering design (mechanical, electrical,
software, etc.) and industrial design (aesthetics, ergonomics, user
interfaces). A suggested idea from commissioner and four idea designs
which issued by the author are presented below.

4.1 Suggested design version

Figure 34 shows a proposed idea from the commissioner. The design has
two layers which have joints with the left column. The feeding food – hay
is stored above the layers and there will be two portions per one cycle.
There are two lock-type actuators to hold the layers and release the
layers when energised based on the timer.

Figure 34. Suggested design version from commissioner

4.2 Concept design version 1

Figure 35 shows a completely different design from the suggestion
layout. This concept uses the rotating working principle. There is a “grey”
top tank which storing feeding food, in this case is hay. It can store up to
2 days of hay (which means 30kg of hay) in use depends on the

36

dimensions of the tank. There is a “black” cyclinder wheel is attached to
the tank by the (orange) hard steel tube through their middle holes. In
addition, there are (red) saw-toothes on the edge of the wheel, they will
make the hay will follow smoothly. The wheel has a quarter-cut, it means
there is a space for hay, and the wheel will rotate 60 degrees in order to
transfer the hay downward to the tray.

Figure 35. Concept design version 1

Advantages of concept design version 1:

• System can be fully automated for whole day and up to two days,
eight portions per day, 3 hours for per portion, 2-3 kg per portion.

• Hay capacity is improved.

• Work load of human reduces.

Disadvantages of concept design version 1:

• Need a high-power motor to rotate the wheel.

• Cost of design could be expensive.

37

• There will be a fault between the wheel and the tank because of
the hay stuck.

• Maintenance work is complex.

4.3 Concept design version 2

In this concept (Figure 36), the author used a linear actuator to operate
the prototype. Basically, there are four layers carrying 2-3kg of hay and
attached to the middle column. By experience, 2kg of hay equal to 30
dm3. The space between two layers is 30 cm, the length of the layers is
also 30 cm and the depth of the layers is 35 cm. Furthermore, the layers
are tilted at about 60 degrees to the middle column.

When the timer is triggered, the linear actuator will be energised and pull
the layer down. Then all the hay on top of that layer will fall by gravity.
The rest layers will be pulled down in turn from bottom to top. When all
layers are released, there will be a push-button in order to pull those
layers up to original positions and they hay will be provided manually by
human.

Advantages of concept design version 2:

• Fully automated controlling layers.

• Safety and ergonomics are improved.

Disadvantages of concept design version 2:

• High cost in actuators.

• Complex in working principle and position of linear actuator.

30cm 30cm

Figure 36. Concept design version 2

38

• Power consumption is in increased.

4.4 Concept design version 3

Figure 37 illustrates the operating principles of push/pull linear solenoid
actuators. There are eight layers which are attached to two side plates by
hinges, and they carry 2 kg of hay which equals to 30 dm3. The space
between two layers is 30 cm, the length of the layers is also 30 cm and
the depth of the layers is 35 cm. Furthermore, the layers are tilted at
about 60 degrees to the left and right hand side columns.

Four two-way-pull solenoids which are located on the middle plate take
responsibility for controlling positions of the layers. Once the left side of
the solenoid is pulled-in, then the left layer will fall. Vice versa, the right
layer will fall.

Advantages of concept design version 3:

• The productivity is increased.

• Safety and ergonomics are improved.

• Take less space to place actuators.

Disadvantages of concept design version 3:

• Hard to find suitable solenoids.

Figure 37. Concept design version 3

39

• It is difficult to put the layers to the original position.

4.5 Concept design version 4

In concept design version 4 illustrated in Figure 38, the author took his
inspiration from the suggested design. There are four layers which can
contain 2 kg of hay and they are connected to the middle plate. Now, four
pull-type solenoids are placed on two side plates and control four layer
‘positions.

Once the solenoids are energised, their sluggers pull in, hence the layers
will fall and hay will drop down. The layers can be placed to their original
positions by hand, then the cycle will reset.

Figure 38. Concept design version 4

Advantages of concept design version 4:

• System cost is lower

• Installation time is lower

• Control system design is simple

• No extra training for operator personnel

• Easy of maintenance.

Difficulties of concept design version 4:

• Need to find the right force for solenoids to hold the layers.

• Need to cover the solenoids in order not to break them.

40

5 FINAL PRODUCT

The systematic design process of concept design typically follows these
steps:

1. The identification and analysis of the problem
2. Definition of the goal of the task
3. Searching for solutions
4. Evaluation of solutions
5. Choosing the most promising variants for follow-up development

(T.Ulrich, Karl; D.Eppinger, Steven, 2016)

After following above steps, integrated with benefits of all versions, the
author and the commissioner have decided to choose and design the final
model as can be seen in Figure 39. Besides, the real size product is
conducted (Figure 40 and 41). Because there was lack of tools to build
the machine, so that the real size model is a bit different when comparing
with final concept design. However, the mechanism of this product is still
achieved.

Figure 39. Final concept design

41

Figure 37 shows the front view of the real size product and clearly see
that there are four white layers made of polycarbonate with the wood
frame and the control box on the left side.

Figure 40. Real size product

Figure 38 presents two sides of the product which obviously see four
solenoids’ places.

Figure 41. Left and right side of real size product

42

5.1 Product overview

The hay feeder is an out-of-the-box solution for feeding individual horses
in rented stalls. The automatic feeder provides pre-set amounts of forage
(hay) for the horse, up to four portions per one cycle and a set of waiting
timer for each portion. To serve four portions, the system has four layers
to carry the amount of hay (in this thesis project, 2kg is enough). There
are four pull-type solenoids take responsibility for holding and releasing
the layers at the edge of them. When a solenoid is energised, the related
layer will move downward, then hay will fall by gravity.

The hay is loaded directly into the feeder unit in the stable by humans.
There are decent spaces between layers to store enough 2kg of hay. After
finishing a cycle, the layers can be placed back to the original positions
with simple action and this action will be mention in feature chapter.

The system is operated by microcontroller Arduino with simple
programming code in C+ language. In addition, with the real-time clock
module, the current time and date are always updated in the system. The
program is designed to generate three pages which consist recent time
for users to keep on track. Besides that, there are five timer options to
select for portion delay such as:

• Option 1: 2 hours / portion

• Option 2: 2 hours and 30 mins / portion

• Option 3: 3 hours / portion

• Option 4: 3 hours and 30 mins / portion

• Option 5: 4 hours / portion

An automatic hay feeder is a good solution for feeding hay to horses more
regularly around the clock. The hay feeder is an optimal solution for
horses, their owners and caretakers alike.

5.2 Technical data

The hay feeder contains four feeding of hay with a maximum weight of
2.5kg per feeding. The dimensions of the feeder cabinet are 75x70x35cm.
The hay feeder is made of wood for frame and polycarbonate for layers.
It will be mounted on the wall of individual stall and there is a front cover
to avoid the interaction form horses.

There is a control box located on the left of feeder for the user to interact
with the system. The user can enter eight times to the feeder to perform
the best solution for horses per day. The system only operates indoor
because of type of materials.

The components of this thesis project included:
Microcontroller: Arduino MEGA 2560
Real time clock module: DS3231

43

Motor switches:

Model BTS410E2 of PROFET is chosen to drive the solenoids. The size of
this model is compact and simple to connect pins.

Figure 42. PROFET model BTS410E2

Liquid Crystal Display (LCD) has two rows with 16 characters each.

Figure 43. LCD 16x2

Solenoid:
Pull-type solenoids from Guardian electric Manufacturing (Figure 44).
According to the theoretical part, this model of solenoid is chosen to run
the mechanism with the adding 3d printing part. The following table
illustrates the technical meter of solenoid:

 Table 4. Solenoid overview

Model no. Duty Cycle
Voltage

(V)
Resistance

Power
(W)

Current
(A)

4HD-I-
24D

Intermittent 24VDC 18.9 32 1.27A

Figure 44. Pull-type solenoid

44

Continuous Duty: 100% ‘On’ time
Intermittent Duty: 25% ‘On’ time, (100 seconds ‘On’ maximum, followed
by 300 seconds ‘Off’ minimum)

The Table 6 shows the range of force for the solenoid. Because of the
working principle which selected by the author, Intermittent duty is
chosen in order to present higher force for the application. Furthermore,
there is an instruction when using intermittent duty solenoid, that a
solenoid can be energised only 100s. And after that the solenoid must
rest at least 300 seconds. Hence, the solenoid can operate in perfect
force.

 Table 5. Force of solenoid

Pushbutton
There are two momentary switches which closing a circuit when pressed
to control the system. Menu pushbutton has function to change three
pages in turn. Select pushbutton has function to select portion options in
option page.

Control box

Figure 45. Control box

Pull force (N)
Holding
force (N)

Stroke (cm) 0.127 0.318 0.635 0.953 1.27 1.588 1.905 2.54 -

Continuous
Duty

34.8 25.6 13.3 9.2 5.6 2.8 2.2 1.4 56.7

Intermittent
Duty

45.9 36.1 23.6 16.7 11.1 8.3 6.1 5.6 65.3

45

The Figure 45 presents the Arduino control box which has four outputs
such as LEDS and LCD, and two simple inputs as pushbuttons. The green
LED presents the free status of the system, the red LED turns on when
the system is in process, and the yellow LED illustrated the cabinet is
empty. There are three holes on the bottom of the box which can plug in
USB cable to debug the program and power source cables to supply
power to the board and the solenoids.

5.3 Arduino breadboard

Figure 46 - Arduino breadboard was designed by the author which
regarding to hay feeder project. The breadboard shows the wiring and
number of component which appear on the system.

Figure 46. Arduino breadboard

5.4 Circuit architecture

The figure 47 illustrates the circuit architecture diagram which is a type
of flowchart that shows the relationships between components. For
system developers, they need the circuit architecture diagram to
understand, clarify, and communicate ideas about the system structure
and the user requirements that the system has to support.

46

5.5 Development of code

In this section, brief of code development is presented. Full version is
listed on Appendix 1.

Software layout
The layout of Arduino software IDE is shown in Figure 48. The code was
wrote and developed individually by the author. The code was used RTC
library and some code lines to debug the real-time clock module.

RTC library and I2C library
The RTC library is retrieved online source on Adafruit (ada). The following
code declares the RTC library and I2C library:

#include <Wire.h>
#include "RTClib.h"

Figure 47. Circuit architecture

47

Figure 48. Arduino software

There is a way to get the time using RTC lib, which is to call now(), a
function that returns a DateTime object that describes the year, month,
day, hour, minute and second when you called now(). The following code
shows the current date and time on LCD display.

void loop () {
 DateTime now = rtc.now(); //declare now() to call RTClib
 lcd.print("Time:");
 lcd.setCursor(6,0);
 if (now.hour() <10){ lcd.print("0");}
 lcd.print(now.hour(), DEC);
 lcd.print(':');
 if (now.minute() <10){ lcd.print("0");}
 lcd.print(now.minute(), DEC);
 lcd.print(':');
 if (now.second() <10){lcd.print("0");}
 lcd.print(now.second(), DEC);
 lcd.setCursor(0,1);
 lcd.print("Date:");
 lcd.setCursor(6,1);
 lcd.print(now.day(), DEC);
 lcd.print('/');
 lcd.print(now.month(), DEC);
 lcd.print('/');
 lcd.print(now.year(), DEC);
 }

48

Menu pushbutton and select pushbutton

//----------------If menu button pushed-------------------
 if (subpage_counter ==0){
 if (last_up== LOW && current_up == HIGH){
//When menu button is pressed
 lcd.clear();
 if(page_counter <3){
//Page counter never higher than 3(total of pages)
 page_counter= page_counter +1; //Page up
 }
 else{
 page_counter= 1;
 }
 }
 last_up = current_up;
}

The above code is designed to control the menu pushbutton.
‘Page_counter’ takes responsibility for storing order number of pages.
Then using ‘switch-case’ function to show page’s contents.

First page - home page
The following code shows the first page of the program (case 1) which
has current time and date. Morever, the Figure 49 illustrates the LCD and
what is going on in first page. The author used RTClib and function now.()
to call time and date.

switch (page_counter) {

 case 1:{ //Design of home page 1
 DateTime now = rtc.now();
 currentTime();
 lcd.setCursor(0,1);
 lcd.print("Date:");
 lcd.setCursor(6,1);
 lcd.print(now.day(), DEC);
 lcd.print('/');
 lcd.print(now.month(), DEC);
 lcd.print('/');
 lcd.print(now.year(), DEC);
 }
 break;

49

Figure 49. First page

Second page – option page

Figure 50. Second page

case 2: { //Design of option page
 lcd.setCursor(0,0);
 lcd.print("Select portion:");
 lcd.setCursor(2,1);
 if(portion_counter <10){ //To avoid "0" of number 10
 lcd.setCursor(2,1);
 lcd.print("0");
 }
 lcd.print(portion_counter);

//Control portion_counter parameter
 if (last_up== LOW && current_up == HIGH){
//When Select button is pushed
 if(portion_counter < 5){
 //portion_count never higher than 5 (max value)
 portion_counter ++ ;
 }
 else{
 portion_counter = 1;
 //If portion_count higher than 5, return to 0
 }
 }
 last_up=current_up;

The above code is programmed to generate the second page (case 2)
which contains ‘select portion:’. And the second page is illustrated in
Figure 50. After that, the user need to press the select pushbutton to
change ‘00’ to different options such as ‘01’,’02’,’03’,’04’,’05’. Each

50

option is stored under ‘portion_counter’ parameter. With simple code of
‘switch-case’ function again, the user can have a look and select a desired
waiting time. For example, the next code show option ‘01’:

switch(portion_counter){
 case 1:{
 lcd.setCursor(6,1);
 lcd.print("2h");
 lcd.setCursor(8,1);
 lcd.print(" ");
 counter =4;
 i = 0;
 }
 break;

In Figure 51 shows five different waiting time options for controlling
layers.

As a result, after finding the best option, with simple calculation set by
the author, the new time for next feeding to stored in ‘alarm_hour’, and
‘alarm_minute’. These paremeters will be timers for current time in page
three.

DateTime now = rtc.now();
 alarm_new = 90 + 30*portion_counter;
 alarm_hour = now.hour() + (round(alarm_new/60));
 if (alarm_hour >=24){ alarm_hour = alarm_hour-24;}
 alarm_minute = now.minute() + (alarm_new-
(60*round(alarm_new/60)));
 if (alarm_minute >= 60){
 alarm_minute = alarm_minute-60;
 alarm_hour = alarm_hour +1;

Figure 51. Five options of portion

51

 }

Third page – next portion time
After selecting a portion option, the user will change to page three to
have a combination of current time and the next feeding time. The next
code shows trouble-free comparison between current time and next
feeding time. When the current hour equals to ‘alarm_hour’, current
minute equals to ‘alarm_minute’, and current second equals to 10, the
solenoid will be energised. After 5 seconds, the solenoid will be turned
off.

 if (now.hour() == alarm_hour && now.minute() ==
alarm_minute && now.second() == 10){

 digitalWrite(motor[i],HIGH);
 }
 else if (now.hour() == alarm_hour && now.minute() ==
alarm_minute && now.second() == 15){
 digitalWrite(motor[i],LOW);
 i++;
 counter = counter -1;
 alarm_hour = now.hour() + (round(alarm_new/60));
 if (alarm_hour >=24){ alarm_hour = alarm_hour-24;}
 alarm_minute = now.minute() + (alarm_new-
(60*round(alarm_new/60)));
 if (alarm_minute >= 60){
 alarm_minute = alarm_minute-60;
 alarm_hour = alarm_hour +1;
 }
 }

LED – indicating machine status

 //indicate for green led - free
 if (counter == 5){
 digitalWrite(led_green, HIGH);
 digitalWrite(led_red, LOW);
 digitalWrite(led_yellow, LOW);
 }
 // indicate for red led - processing
 if (counter < 5 && counter > 0){
 digitalWrite(led_green, LOW);
 digitalWrite(led_red, HIGH);
 digitalWrite(led_yellow, LOW);
 }
 //indicate for yellow led - empty
 if (counter == 0){
 digitalWrite(led_green, HIGH);
 digitalWrite(led_red, LOW);
 digitalWrite(led_yellow, HIGH);

52

 }

With the short code above, three LEDs are controlled to desinate statuses
of the machine such as free, processing, and empty.

5.6 Advantages & features

5.6.1 Advantages

• With the automatic hay feeders, you can upgrade your service
range to a whole new level.

• Helps you to optimise the time and effort spent on the daily chores.

• The horses are fed at regular intervals around the clock, which
improves their well-being and condition which leads to a deduced
need for visits to the stable, thus saving money.

• A practical solution for feeding your horse in a rented stall at night.

• The price is reasonable, about 300 euros of materials and cost less
than recent same products on market like 50% less.

5.6.2 Features

The solenoid head part is designed ergonomic in order to optimize the
work that putting the layers back to their original position.

The user just needs to push the layers upwards to the slide part of the
“lock-type” shape (as can be seen in Figure 52), the slugger will be pulled
in. So that there will be spaces for layers to move on and then lay on the
edges of “lock-type” shape. The step by step is illustrated in Figure 53.

Figure 52. Lock-type shape (yellow part) which attached to slugger

53

6 LIMITATION AND EXPANSION POSSIBILITIES

In the current design, the system has some limitations which are
presented below:

• Only serves four portions in one cycle

• Does not really meet the user interface experience like sending
statuses of machine to owner’s smartphones.

• Because the feeder’s frame is made of wood, so this model is only
available indoor.

• The Arduino only operate in short range of temperature, cannot
work well in really cold weather or very hot temperature.

• No sensors installed to detect the capacity of each feeding.

Further development of the final product was requested by the
commissioner, he wants to expand the capacity of the Arduino to control
up to four feeders with the same pre-set time for all the plates. Not only
that, but also sending a signal to the owner’s smartphone to warn
him/her that the hay feeder is empty could be an option to add further
automation.

For commercial products, this prototype needs lots of modifications.
Firstly, the materials, the frame could be made of powder-coated steel
and also the layers. Because with steel, the machine can handle in harsh
environment such as lower temperature below 20C. Secondly, the
smaller and stronger pull-type solenoids should be found to replace the
recent solenoids. Thirdly, a set of sensors can be added to notice and
warning the status of feeding stage. In addition, a bigger display should

Step 1

Step 3 Step 4

Step 2

Figure 53. Step by step of mechanism

54

be installed in order to highlight more details of the system. Finally,
finding another microcontroller which can operate outdoor conditions.

7 CONCLUSION

After several months, the project was completed and it met all the
requirements set by the commissioner. The author has gathered a lot of
experiences in mechanical aspects in building an effective product in this
project, and has learnt about automation logic to make an effective
program.

The economic success of this project depended on the ability to identify
the needs of commissioner and other customers. There was a need to
quickly create products that would meet these needs and could be
produced at low cost. For this prototype, the cost of manufacture is not
so high when compared with market product, about 50% less. Moreover,
this prototype is not difficult to assembly. Developing the working
mechanism was the most challenging part of this project. The author
designed a unique mechanism for the contact between the layers and the
actuators to optimize the working principle of the feeder.

The user interaction with the hay feeder also played an important role in
this project. Through practical experience, at a normal rented stall in
Valkeakoski area, the author got to know the requirements how to feed
horses and what the demands were for the user interface of the hay
feeder. According to the factors, the author designed the programming
for the system in order to keep it as simple as possible and easy to
operate for the owner.

Overall, the satisfaction from the commissioner and the targets of this
thesis project were achieved by the author. Further expansion and
modification will be attained in the future and the author believes that
this product can thrive.

55

REFERENCES

ACTUATORS - SOLENOIDS. (n.d.). Retrieved Mar 16, 2018, from society of robots:

http://www.societyofrobots.com/actuators_solenoids.shtml

ada, l. (n.d.). Adafruit DS3231 Precision RTC Breakout. [web log message]. Retrieved Mar

11, 2018, from learn adafruit: https://learn.adafruit.com/adafruit-ds3231-
precision-rtc-breakout?view=all

Arduino.cc. (2015, Feb 25). Introduction of Arduino. Retrieved Apr 2, 2018, from

arduino: https://www.arduino.cc/en/Guide/Introduction

b_e_n. (2012). What is an Arduino? [web log message]. Retrieved Apr 2, 2018, from

sparkfun: https://learn.sparkfun.com

Boxall, J. (2014, 11 28). Tutorial: Arduino and the I2C bus – Part One. Retrieved Apr 2,

2018, from tronixstuff: http://tronixstuff.com/2010/10/20/tutorial-arduino-
and-the-i2c-bus/

Brain, M. (2000, April 1). How Microcontrollers Work. [web log message]. Retrieved Mar

2, 2018, from howstuffworks:
https://electronics.howstuffworks.com/microcontroller.htm

Heath, N. (2017, Nov 30). What is the Raspberry Pi 3? Everything you need to know

about the tiny, low-cost computer. Retrieved Apr 20, 2018, from zdnet:
https://www.zdnet.com/article/what-is-the-raspberry-pi-3-everything-you-
need-to-know-about-the-tiny-low-cost-computer/

Hukka, S. (2017, July 26). Hunting machine for horses. Retrieved Apr 20, 2018, from

Youtube: https://www.youtube.com/watch?v=-8BJRqPPAvI

infineon. (2016, 03). PROFET. Retrieved from infineon:

https://www.infineon.com/dgdl/Infineon-PROFET_Smart_high-
side_switches_ProductOverview-SG-v01_00-
EN.pdf?fileId=db3a304343a131180143b50598a525ab

Infineon Technologies AG. (2013). Smart High-Side Power Switch. Retrieved from

infineon: https://www.infineon.com/dgdl/Infineon-BTS410E2-DS-v01_01-
en.pdf?fileId=db3a304331c8f8560131dcc9fc520e21

Jeske, C. (2015, 10 05). Characteristic of successful products. [web log message].

Retrieved Mar 10, 2018, from willitlaunch:
http://www.willitlaunch.com/Characteristics-of-Successful-Products

Joeman, Kellyhensen. (2016, Feb 22). Raspberry Pi 3 Model B Technical Specifications.

Retrieved Apr 15, 2018, from element14:

56

https://www.element14.com/community/docs/DOC-80899/l/raspberry-pi-3-
model-b-technical-specifications

John. (2011, Feb 9). Double-Diffused MOS (DMOS). Retrieved Mar 10, 2018, from

circuitstoday: http://www.circuitstoday.com/double-diffused-mos-dmos

Louis, L. (2016). WORKING PRINCIPLE OF ARDUINO AND USING IT. India: IJCACS.

Maru, A. (2016). Presentation on History of Microcontroller.

Nedelkovski, D. (2016). Arduino and DS3231 Real Time Clock Tutorial. Retrieved Mar 10,

2018, from how to mechatronics:
https://howtomechatronics.com/tutorials/arduino/arduino-ds3231-real-time-
clock-tutorial/

Oy Equine Innovations Ltd. (2018, Apr 21). Retrieved from hevoskeksinnot:

http://www.hevoskeksinnot.fi/ota-yhteytta/

Poddar, S. (2015, Nov 9). What is an actuator? Retrieved Apr 20, 2018, from quora:

https://www.quora.com/What-is-an-actuator

Protected and Intelligent Power Switches. (2016, Mar 15). Retrieved Mar 24, 2018, from

renesas: https://www.renesas.com/en-in/products/intelligent-power-
devices/high-side-driver-low-side-driver.html#productInfo

Renesas. (2016). Protected and Intelligent Power Switches. Retrieved Mar 10, 2018,

from renesas: https://www.renesas.com/en-in/products/intelligent-power-
devices/high-side-driver-low-side-driver.html#productInfo

SFUPTOWNMAKER. (2013, JULY 8). I2C. Retrieved Mar 20, 2018, from learn sparkfun:

https://learn.sparkfun.com/tutorials/i2c?_ga=2.3592880.125437095.15232997
83-1098816997.1517222129

Smart High-Side Power Switch. (2013, Oct 15). Retrieved Mar 11, 2018, from Infineon

Technologies AG: https://www.infineon.com/dgdl/Infineon-BTS410E2-DS-
v01_01-en.pdf?fileId=db3a304331c8f8560131dcc9fc520e21

Solenoids. (2012). Retrieved Apr 1, 2018, from Johnson Electric:

http://www.johnsonelectric.com/en/resources-for-
engineers/solenoids/~/media/005A9A8652994C549B34B5C88C8284AC.ashx

Storr, W. (2014, April). Linear Solenoid Actuator. Retrieved Apr 1, 2018, from

electronics-tutorials: https://www.electronics-tutorials.ws/io/io_6.html

T.Ulrich, Karl; D.Eppinger, Steven. (2016). PRODUCT DESIGN AND DEVELOPMENT 6TH

EDITION. New York: McGraw-Hill Education.

57

The glossary of solenoid. (n.d.). Retrieved Mar 15, 2018, from thesolenoidcompany:
http://www.thesolenoidcompany.com/glossary

ULN2803A Darlington Transistor Arrays. (2017, Feb). Retrieved from texas instrumentas:

http://www.ti.com/lit/ds/symlink/uln2803a.pdf

Viitala, A.-M. (2018). Embedded Systems. [web log message]. Retrieved Mar 15, 2018,

from tut.fi: http://www.tut.fi/en/admissions/masters-studies-in-
english/embedded-systems/index.htm

58

Appendix 1
ARDUINO CODE

// Date and time functions using a DS3231 RTC connected via I2C and
Wire lib
#include <Wire.h>
#include "RTClib.h"
#include <LiquidCrystal.h>

RTC_DS3231 rtc;
LiquidCrystal lcd(0,1,22,2,3,4);

int motor[] ={26,28,30,32};

int up = 8; //Menu button
int sel = 9; //Select button

int led_green =42; //Green led
int led_red=44; //Red led
int led_yellow=46; //Yellow led

//set the variable for alarm elements
int alarm_hour = 0;
int alarm_minute = 0;
int alarm_second =0;
int alarm_base = 120;
int alarm_new;

//set the variable for counter elements
int counter = 5;
int i;
int motor_counter;
int page_counter=1 ; //To move beetwen pages
int subpage_counter=0; // To subpage in select portion
int subpage2_counter=0; // To subpage in next time for portion
int portion_counter = 00; //To select portion options

//---------Storage debounce function-----//
boolean current_up = LOW;
boolean last_up=LOW;
boolean last_sel= LOW;
boolean current_sel = LOW;

//Custom return char
byte back[8] = {
 0b00100,
 0b01000,

59

 0b11111,
 0b01001,
 0b00101,
 0b00001,
 0b00001,
 0b11111
};
//Custom arrow char
byte arrow[8] = {
 0b01000,
 0b00100,
 0b00010,
 0b11111,
 0b00010,
 0b00100,
 0b01000,
 0b00000
};
//--
void currentTime(){
 DateTime now = rtc.now();
 lcd.setCursor(0,0);
 lcd.print("Time:");
 lcd.setCursor(6,0);
 if (now.hour() <10){ lcd.print("0");}
 lcd.print(now.hour(), DEC);
 lcd.print(':');
 if (now.minute() <10){ lcd.print("0");}
 lcd.print(now.minute(), DEC);
 lcd.print(':');
 if (now.second() <10){lcd.print("0");}
 lcd.print(now.second(), DEC);
}
//--
void setup () {
 lcd.begin(16,2);
 pinMode(motor[0], OUTPUT);
 pinMode(motor[1], OUTPUT);
 pinMode(motor[2], OUTPUT);
 pinMode(motor[3], OUTPUT);
 pinMode(led_green, OUTPUT);
 pinMode(led_red, OUTPUT);
 pinMode(led_yellow, OUTPUT);

 digitalWrite(motor[0], LOW);
 digitalWrite(motor[1], LOW);
 digitalWrite(motor[2], LOW);
 digitalWrite(motor[3], LOW);

60

 digitalWrite(led_green, LOW);
 digitalWrite(led_red, LOW);
 digitalWrite(led_yellow, LOW);

 delay(3000); // wait for console opening

 if (! rtc.begin()) {
 lcd.println("Couldn't find RTC");
 while (1);
 }

 if (rtc.lostPower()) {
 lcd.println("RTC lost power");
 // following line sets the RTC to the date & time this sketch was
compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 // This line sets the RTC with an explicit date & time, for example to
set
 // January 21, 2014 at 3am you would call:
 // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
 }
 lcd.createChar(1, back);
 lcd.createChar(2, arrow);
}
//---- De-bouncing function for all buttons----//
boolean debounce(boolean last, int pin)
{
 boolean current = digitalRead(pin);
 if (last != current)
 {
 delay(5);
 current = digitalRead(pin);
 }
 return current;
}
//--
void loop () {

current_up = debounce(last_up, up); //Debounce for Menu button
current_sel = debounce(last_sel, sel); //Debounce for Select button

//----Page counter function to move pages----//
//----------------If menu button pushed-------------------
 if (subpage_counter ==0){
 //Page Up
 if (last_up== LOW && current_up == HIGH){ //When up button is
pressed
 lcd.clear();

61

 if(page_counter <3){ //Page counter never higher than 3(total
of pages)
 page_counter= page_counter +1; //Page up
 }
 else{
 page_counter= 1;
 }
 }
 last_up = current_up;
 }

//------- Switch function to write and show what you want---//
 switch (page_counter) {

 case 1:{ //Design of home page 1
 DateTime now = rtc.now();
 currentTime();
 lcd.setCursor(0,1);
 lcd.print("Date:");
 lcd.setCursor(6,1);
 lcd.print(now.day(), DEC);
 lcd.print('/');
 lcd.print(now.month(), DEC);
 lcd.print('/');
 lcd.print(now.year(), DEC);
 }
 break;

 case 2: { //Design of page 2
 lcd.setCursor(0,0);
 lcd.print("Select portion:");
 lcd.setCursor(2,1);
 if(portion_counter <10){ //To avoid "0" of number 10
 lcd.setCursor(2,1);
 lcd.print("0");
 }
 lcd.print(portion_counter);

 lcd.setCursor(15,1);
 lcd.write(byte(1)); //Return custom char

 // Sub counter 2 control
 if (last_sel== LOW && current_sel == HIGH){ //select button pressed
 if(subpage_counter <2){ // subpage counter never higher
than 2(total of items)
 subpage_counter ++; //subcounter to move beetwen
submenu
 }

62

 else{ //If subpage higher than 2 (total of items)
return to first item
 subpage_counter=1;
 }
 }
 last_sel=current_sel; //Save last state of select button

 //select portion number
 if(subpage_counter==1){
 lcd.setCursor(14,1);
 lcd.print(" "); //Delete last arrow position
 lcd.setCursor(0,1);
 lcd.write(byte(2));

 //Control portion counter variable
 if (last_up== LOW && current_up == HIGH){ //Select button is
pushed
 if(portion_counter < 5){ //portion_count never higher
than 5 (max value)
 portion_counter ++ ;
 }
 else{
 portion_counter = 1; //If portion_count higher
than 5, return to 0
 }
 }
 last_up=current_up;
 }
 switch(portion_counter){
 case 1:{
 lcd.setCursor(6,1);
 lcd.print("2h");
 lcd.setCursor(8,1);
 lcd.print(" ");
 counter =4;
 i = 0;
 }
 break;

 case 2:{
 lcd.setCursor(6,1);
 lcd.print("2h 30min");
 counter = 4;
 i = 0;
 }
 break;

 case 3:{

63

 lcd.setCursor(6,1);
 lcd.print("3h");
 lcd.setCursor(8,1);
 lcd.print(" ");
 counter =4;
 i = 0;
 }
 break;

 case 4:{
 lcd.setCursor(6,1);
 lcd.print("3h 30min");
 counter =4;
 i = 0;
 }
 break;

 case 5:{
 lcd.setCursor(6,1);
 lcd.print("4h");
 lcd.setCursor(8,1);
 lcd.print(" ");
 counter =4;
 i = 0;
 }
 break;

 }
 //Second item control (subpage_counter==2) back
 if(subpage_counter==2){
 lcd.setCursor(0,1);
 lcd.print(" "); //Delete last arrow position
 lcd.setCursor(14,1); //Place the arrow
 lcd.write(byte(2));
 if (last_up== LOW && current_up == HIGH){
 subpage_counter=0; //Exit submenu, up/down pages
enabled
 lcd.setCursor(14,1);
 lcd.print(" ");
 }
 last_up=current_up;
 }
 DateTime now = rtc.now();
 alarm_new = 90 + 30*portion_counter;
 alarm_hour = now.hour() + (round(alarm_new/60));
 if (alarm_hour >=24){ alarm_hour = alarm_hour-24;}
 alarm_minute = now.minute() + (alarm_new-
(60*round(alarm_new/60)));

64

 if (alarm_minute >= 60){
 alarm_minute = alarm_minute-60;
 alarm_hour = alarm_hour +1;
 }
 }
 break;

 case 3: { //Design of page 3

 //set the layout for Page 3
 DateTime now = rtc.now();
 currentTime();
 lcd.print(" ");
 lcd.print(counter);

 // Print the next tine for next portion
 lcd.setCursor(0,1);
 lcd.print("Next:");
 lcd.setCursor(6,1);
 if (alarm_hour <10){ lcd.print("0");}
 lcd.print(alarm_hour);
 lcd.print(':');
 if (alarm_minute <10){ lcd.print("0");}
 lcd.print(alarm_minute);
 lcd.print(':');
 lcd.print("10");

 if (now.hour() == alarm_hour && now.minute() == alarm_minute &&
now.second() == 10){

 digitalWrite(motor[i],HIGH);
 }
 else if (now.hour() == alarm_hour && now.minute() == alarm_minute
&& now.second() == 15){
 digitalWrite(motor[i],LOW);
 i++;
 counter = counter -1;
 alarm_hour = now.hour() + (round(alarm_new/60));
 if (alarm_hour >=24){ alarm_hour = alarm_hour-24;}
 alarm_minute = now.minute() + (alarm_new-
(60*round(alarm_new/60)));
 if (alarm_minute >= 60){
 alarm_minute = alarm_minute-60;
 alarm_hour = alarm_hour +1;
 }
 }
 if (counter ==0){
 lcd.clear();

65

 lcd.setCursor(0,0);
 lcd.print("The process is ");
 lcd.setCursor(0,1);
 lcd.print("finnished");
 counter = 4;
 delay(4000);
 page_counter = 1;
 lcd.clear();
 }
 }
 break; // Break for case 3
 } // end switch
 //indicate for green led - free
 if (counter == 5){
 digitalWrite(led_green, HIGH);
 digitalWrite(led_red, LOW);
 digitalWrite(led_yellow, LOW);
 }
 // indicate for red led - processing
 if (counter < 5 && counter > 0){
 digitalWrite(led_green, LOW);
 digitalWrite(led_red, HIGH);
 digitalWrite(led_yellow, LOW);
 }
 //indicate for yellow led - empty
 if (counter == 0){
 digitalWrite(led_green, HIGH);
 digitalWrite(led_red, LOW);
 digitalWrite(led_yellow, HIGH);
 }
}// end Loop

